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Abstract

A wavelet basis selection procedure is presented for wavelet regres-
sion. Both the basis and the threshold are selected using cross-

validation. The method includes the capability of incorporating

prior knowledge on the smoothness (or shape of the basis functions)

into the basis selection procedure. The results of the method are

demonstrated on sampled flmctions widely used in the wavelet re-

gression literature. The results of the rcmthod are contrasted with

other published methods.

1 INTRODUCTION

Wavelet regression is a technique which attempts to recover a sampled fimction

corrupted with noise. This is done by thresholding the small wavelet decomposition
coefficients which represent mostly noise. Most of the papers published on wavelet

regression have concentrated on the threshold selection process. This paper focuses
on the effect that different wavelet bases have on cross-validation based threshold

selection, and the error in the final result. This paper also suggests how prior

inforInation may be incorporated into the basis selection process, and the effects

of choosing a wrong prior. Both orthogonal and biorthogonal wavelet bases were

explored.

Wavelet regression is performed in three steps. The first step is to apply a discrete

wavelet transform to the sampled data to produce decomposition coefficients. Next

a threshold is al)plied to the coefficients. Then an inverse discrete wavelet transform

is applied to these lnodified coefficients.



Thebasisselection1)rocedureisdemonstratedto preformbetterthanotherwavelet.
regressionmethodsevenwhenthewrongprioronthespaceof thebasisselections
isspecified.
Thispaperis brokenintothefollowingsections.Thebackgroundsectiongivesa
briefsummaryofthemathematicalrequirementsof thediscretewavelettransform.
Thissectionis followedbya methodologysectionwhichoutlinesthebasisselection
algorithms,andtheprocessforobtainingthepresentedresults.Thisis followedby
aresultssectionandthena conclusion.

2 BACKGROUND

2.1 DISCRETE WAVELET TRANSFORM

The Discrete Wavelet Transform (DWT) [Daubechies, 92] is implemented as a se-
ries of projections onto scaling functions in L2(N). The initial assumption is that

the original data samples lie in the finest space V0 spanned by the scaling function

¢ E I'{) such that. the collection {g_(x - l) I l E Z} is a Riesz basis of V0. The first

level of the dyadic decomI)osition then consists of projecting the data samples onto

scaling fimctions which have been dilated to be twice as wide as the orignal ¢ which

span the coarser space t';a : {¢(2x-2/) I l E Z}. The information that is lost going
from the finer to coarser scale is retained in what is known as wavelet coefficients.

Instead of differencing, the wavelet coefficients can be obtained via a projection

operation onto the wavelet basis functions ,/, which span a space known as 1.1%.

The projections are typically implemented using: Quadrature Mirror Finite Impulse

Response Filters (QMFIR). The next. level of decomposition is obtained by again
doubling the scaling fimctions and projecting the first scaling decomposition coeffi-
cients onto these timer.ions. The difference in inforntation between these two levels

is contained in the wavelet coefficients for this level. In general, the scaling functions

for level j and translation m may be represented by: 0}'_(t) = 2%/0(2-/t - m)

wheretE [0, 2k-l], k_> 1, l_<j_<k, 0_<m 5_2k-/-1.

2.1.1 Orthogonal

An orthogonal waveler_ decomposition is defined such that the difference space 1_)

is the orthogonal complement of t(/ in Vj+I : IV0 ± I_) which means that the
projection of the wavelet flmctions onto the scaling functions on a level is zero:

<_,,0( - l)) = 0, l c z

This results in the wavelet spaces Wj with j E Z being all mutually orthogo-

nal. The refinement relations for an orthogonal decomposition may be written as:

¢(X) = 2_-_khk¢(2X-- k) and 2_gk_)(2x-k).

2.1.2 Biorthogonal

Symlnetry is as an important property when considering using the scaling func-

tions as interpolatory functions. Most commonly used interpolatory functions are

syimnetric.

Daubechies [Daubechies, 92] mentions that it is _vell known in the subband filtering

community that symmetry and exact reconstruction are incompatible if the same



FIR filtersareusedforreconstructionanddecomi)osition,exceptfor theHaarfil-
ter. If wearewillingto usedifferentfiltersfor theanalysisandsynthesisbanks,
thensymmetryandexactreconstructionare_ssible.Biorthogonalwaveletshave
a dualscalingfunction(_andadualwavelet_t,.Thesegenerateadualmultireso-
lutionanalysiswithsubspacesI_ andI_I_sothat:l_ _1_Wj and I) ± II>j and the

orthogonality conditions can now be written as:

($,_,,(.- l)5 = (g,,0(. - t)} = 0

(@,t,Ok,,,) = 5)-k,6t-,,_ for l,m,j,k E Z

(@,l,t/'k,,_} = 6j-k,5l .... for l,m,j,k C Z

The refinement relations for biorthogonal wavelets can be written:

O(_) = '2_ hkO(2_- k) and _,(x)
k

_;(_) : :_,_ _$(2_ - k) and ._;(x)
k

= 2 Z g_$(z_ - _-)

Basically this means that the scaling functions at one level are COml)osed of linear

combinations of scaling functions are the next. finer level. The wavelet fUllCtions at.

one level are also composed of linear combinations of the scaling fimctions at the
next finer level.

2.2 LIFTING AND SECOND GENERATION WAVELETS

Swelden's lifting schenm [Sweldens, 95a] is a way to transform a biorthogonal wavelet
decomposition obtained from low order filters to one that could be obtained from

higher order filters (more FIR filter coefficients) without applying the longer filters

and thus saving computations. This method can be used to increase the mnnber

of vanishing moments of the wavelet, or change the shape of the wavelet. This
means that several different filters (i.e. sets of bnsis functions) may be applied with

properties relevant to the problem domain in a manner more efficient than directly

applying the filters individually. This is beneficial to performing the search over the

space of admissible basis functions meeting the problem domain requirements.

Swelden's Second General Wavelets [Sweldens, 95b] are a result of applying lifting
to simple interl)olating biorthogonal wavelets and redefining the refinement relation
of the dual wavelet to be:

_,(x) = _(2/-1)-Eiaka(x-k)
k

where the ak are the lifting parameters. The lif_;ing parameters may be selected to

achieve desired propelties in the basis flmctions relative to the 1)roblem domain.

Prior information for a particular application domain may now be incorporated into

the basis selection for wavelet regression. For example, if a particular application

requires that there be a certain degree of smoothness (or a certain number of van-

ishing moments) then only those lifting l)arameters which result in a number of

vanishing moments within this range are used. This could formally be specified as

specifying a distribution about those hyper-pa_:ameters used in the kernel of the

probability density flmction of admissible lifting functions.



2.3 THRESHOLD SELECTION

Since the wavelet transform is a linear operator, if sampled data has noise, then

the decomposition coefficients will have the same form of noise. Tile idea behind

wavelet regression is lhat the d(,composition ccefficients that have a small magni-
tude are substantially representative of the noi:se component of the sampled data.
A threshold is selected and then all coefficients which are below the threshold ill

magntiude are either set to zero (a hard threshold) or a moved towards zero (a soft:

threshold). Tile soft threshohl 7It(y) = sgn(y)(I Y ] -t) is used in this study.

There are two basic methods of threshold selection: 1. Donoho's [Donoho, 95]

analytic method which relies on knowledge of the noise distribution (such as a

Gaussian noise source with a certain variance) ; 2. a cross-validation approach (many

of which are reviewed in [Nason, 96]). It is beyolld the scope of this paper to review
these methods. Leave-one-out cross-validation was used in this study.

3 METHODOLOGY

The test flmctions used ill this study are the fi)ur fimctions published by Donoho

and Johnstone [Donoho and Johnstone, 94]. _'hese functions have been adopted

by the wavelet regression comnnmity to aid in comparison of algorithms across

publications.

Each function was uniformly sampled to contain 2048 points Gaussian white noise

was added so that the signal to noise ratio (SNR) was 7.0. Fifty replicates of each

noisy flmction were.' created, of which four examples are depicted in Figure 1.

Tile noise removal process involves three steps. The first step is to perform a discrete

wavelet transf()rm using a paticular basis. A threshold was selected for the resulting

decomposition coefficients using leave-one-out cross validation with padding.

The soft, threshold is then at)plied to the decomposition. Next the inverse wavelet

transform is applied to obtain a denoised version of tile original signal.

3.1 WAVELET BASIS SELECTION

To demonstrate the effect of basis selection on the threshold found and the resulting

recovered signal the following ext)eriment was conducted. Two well studied orthog-
onal wavelet families were used: Daubechies most compactly supported (DMCS),

and Symlets (S) [Daubechies, 92]. For the DMCS family, filters of order 1 (which
corresponds to the Haar wavelet) t.o 7 were used. For the Symlets, filters of order 2

through 7 were used. For each filter, leave-one-out cross-validation was used to find
a threshold which minimized the mean square error for each of the 50 replicates

for the four test flmctions. The median threshc4d found for each case is presented.

This median threshold is then applied to the decomposition of each of the ret)licates

for each test flmction. The resulting reconstructed signals are then compared to

the ideal flmction (the original before noise was added) and the Normalized Root

Mean Square Error (NRMSE) is presented.

The numt)er of points in the fimctions were varied from 2048 to 128 to demonstrate

the sensitivity of the method to samI)le size.



Table1:Effectsof BasisSelection

Filter: Median NRMSE Median
Function Order_ Family Thr. (MY) UsingMT TrueThr.
Blocks 1.33 0.038 1.61

1.40Blocks
Bumps
Bumps
Doppler
Doppler
Heavysin
Heavysin

1 i Daubechies
i

2 i Symmlets
4 i Daubeehies

5 I Symmlets
8 Daubechies

8 Symmlets
2 Daubechies

5 _ Symmlets

1.245

1.11

0.045

0.059 1.47

NRMSE

using MTT
0.036

0.045

0.056

1.13 0.058 1.48 0.055

1.27 0.058 1.65 0.054

1.36 0.054 1.74 0.050

1.97 0.039 2.17 0.038

1.985 0.039 2.16 0.038

3.2 INCORPORATING PRIOR INFORMATION: LIFTING

PARAMETERS

If the function that we are sampling is known to have certain smoothness proper-

ties, then a distribution of the admissible lifting coefficients representing a similar
smoothness characteristic (:an be formed. However it is not. necessary to cautiously

pick a prior. The performance of this method with a piecewise linear prior (the

(2,2) biorthogonal wavelet of Cohen-Daubechies-Feauveau [Cohen, 92]) has been

applied to the non-linear smooth test fimctions. This method has been compared
with several standard techniques. The Smoothing Spline method (SS) [Wahba, 90],

Donoho's Sure Shrink method (SureShrink)[Donoho, 95], and an optimized Radial

Basis Function Neural Network (RBFNN).

4 RESULTS

In the first experiment the procedure was only allowed to select between two well

know bases (Daubechies most compactly supported and symmlet wavelets) with the
desired filter order, qTable 1 shows the filter order resulting in lowest NRMSE for

each filter and fimction. As expected the best basis for the noisy blocks flmction

was the piecewise linear basis (Daubechies, order 1). The doppler, which has very

high frequency components required the highest filter order.

The method presented, as well as many wavelet regression schemes, has the flaw that

a large number of samples is required. The median threshold, minimum threshold,
and maximum threshold found for the heavysin function for various sample sizes is
shown in Table 2. The deviation in the selected threshold increases as the sample

size decreases and the thresholds found a typically too small to adequately remove

the noise. However this is a very common problem in many wavelet regression
methods.

The basis selection procedure (labelled CV-Wavelets in Table 3) was compared

with Donoho's SureShrink, Wahba's Smoothing Splines, and an optimized RBFNN.

The prior information specified incorrectly to vim procedure to prefer bases near

piecewise linear. The remarkable observation is that the lnethod did better than
the others as measured 1)3, Mean Square Error.
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Figure 1: Noisy Test Functions
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Recovered Blocks, Function Recovered Bumps Function

Recovered Heavysin flmction Recovered Doppler function.

Figure 2: Recovered ]?unctions



Table2: SampleSizeComparisonTable
Median Mi:l Max

Size Thr. Th::. Thr.

2048 1.97 1.65 2.33

1024 1.75 1.39 2.28

512 1.61 1.12 2.87

256 1.66 0.90 2.19

128 1.88 0.99 2.28

Table 3: Methods Comparison Table of MSE

Fnnction SS SureShrink RBFNN CV-Wavelets

Blocks 0.546 0.398 1.281 0.362

Heavysin 0.075 0.062 0.113 0.051

Doppler 0.205 0.145 0.287 0.116
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